From: Lottig, Justin

Sent: Friday, January 07, 2011 11:13 AM

To: matthew.kurano@doh.hawaii.gov; Tanimoto, Jamie

Cc: Whelan, Joseph; Frey, Jesse

Subject: Request for Information from DOH CWB

As requested verbally by the State of Hawaii Department of Health Clean Water Branch (CWB) during a site inspection on December 23, 2010 Waste Management is providing the following information:

CWB Request: When we collect samples for the discharge associated with the December 19, 2010 storm event, the CWB requested that in addition to our normally required analyte list, we should add a bacterial analysis and a major cation and anion analysis.

WM Response: WM contacted our stormwater sampling consultant and they were able to collect samples the evening of December 23, 2010. The consultant was not able to obtain the sterilized sample containers required for bacteria analysis that evening and the next morning the discharge had stopped. However, a sample was collected for major cation and anion analysis. Those results are included with this email in table format.

CWB Request: Please provide the rainfall data from the December 19 storm event.

WM Response: Rainfall data are attached.

CWB Request: Please provide an approximation of the volume of water that was retained in the pond that formed in the cell E6 area during the rain event.

WM Response: Based on the high water elevation (approximately 432 ft. amsl.) and the waste grades, WM believes there was approximately 7.5 million gallons of water accumulated in the Cell E6 area.

CWB Request: Please report the results of the stormwater samples to the CWB verbally when you receive them and follow with a written report summarizing the results and the storm timeline.

WM Response: Results were provided verbally to Jamie Tanimoto on January 5, 2011 shortly after they were received from the laboratory. A written report is expected to be submitted to the CWB within the next two weeks and this will include laboratory reports as you have requested.

CWB Request: Please provide a diagram of the Cell E6 including the riser pipes for the leachate sump.

WM Response: An as-built survey of the operations layer of cell E6 is attached for your records.

1/21/2011

Justin H. Lottig Environmental Protection Manager Waste Management of Hawaii 92-460 Farrington Highway Kapolei, HI 96707 808.668.2985

Waste Management is North America's largest recycler of household-generated recyclables, recycling enough newspaper, office paper and cardboard last year to save more than 41 million trees.

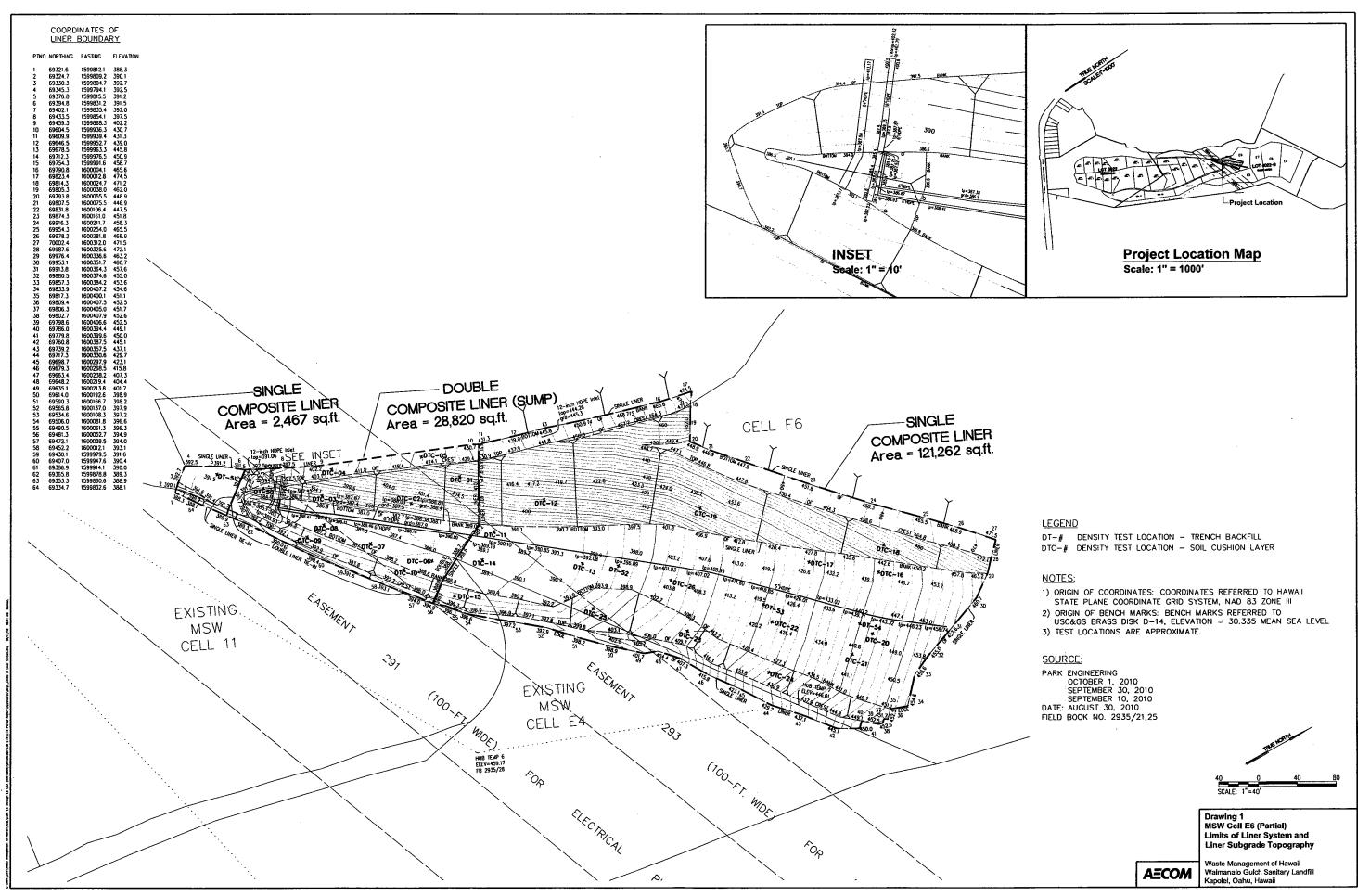
Waste Management recycles enough paper every year to save 41 million trees. Please recycle any printed emails.

MONTHLY CLIMATOLOGICAL SUMMARY for DEC. 2010

NAME: WGSLOffi CITY: Kapolei STATE: Hawaii

ELEV: 80 ft LAT: 21° 24' 00" N LONG: 158° 06' 00" W

TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)


DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR
1	77.3	84.4	1:30p	72.1	3:00a	0.0	12.3	0.31	10.8	27.0	5:00p	ENE
2	77.6	83.8	1:30p	74.1	2:00a	0.0	12.6	0.00	11.7	30.0	10:00a	ENE
3	76.1	82.7	2:30p	72.0	2:30a	0.0	11.1	0.00	16.4	36.0	8:00a	ENE
4	76.5	83.8	2:00p	71.8	12:00m	0.0	11.5	0.00	10.2	31.0	12:00p	ENE
5	75.7	84.9	1:00p	69.6	2:30a	0.0	10.7	0.00	8.9	33.0	1:00p	ENE
6 7	74.7	82.1	1:30p	69.4	6:30a	0.0	9.7	0.00	4.3	15.0	12:30p	NNE
	74.1	80.6	1:00p	66.6	2:30a	0.0	9.1	0.00	3.1	13.0	1:00p	NE
8 9	74.9	81.7	12:00p	68.8	5:30a	0.0	9.9	0.00	4.4 8.5	15.0	11:00p	NE
10	76.7 69.9	81.8 73.8	12:00p	66.8 66.5	12:00m 4:30a	0.0	11.7 4.9	0.69 0.83	8.5 5.5	31.0 32.0	11:00p	SE
11	73.9	80.2	10:30p 4:00p	67.4	7:30a	0.0	8.9	0.68	5.3	25.0	2:00p 5:30p	ENE NE
12	75.4	80.1	3:00p	70.8	7:30a 3:30a	0.0	10.4	0.01	5.1	19.0	6:30a	NE NE
13	77.1	84.4	12:30p	70.0	6:00a	0.0	12.1	0.00	5.0	18.0	12:30p	ENE
14	77.2	84.6	12.30p 11:30a	72.8	5:00a	0.0	12.1	0.00	3.8	18.0	12:30p	NE
15	76.7	84.3	3:00p	70.1	4:00a	0.0	11.7	0.00	5.5	24.0	10:30a	NE NE
16	75.6	81.5	2:00p	70.2	7:30a	0.0	10.6	0.00	$\frac{3.3}{4.1}$	14.0	9:30a	NE
17	75.7	82.7	12:30p	69.0	7:30a 2:30a	0.0	10.7	0.00	4.5	18.0	12:00p	NE
18	76.0	81.1	12:00p	71.8	5:30a	0.0	11.0	0.00	6.0	18.0	10:30p	ENE
19	72.0	75.3	12:30a	69.3	11:30a	0.0	7.0	5.38	7.1	24.0	5:00p	ENE
20	74.8	77.3	3:00p	73.5	4:00a	0.0	9.8	0.14	4.5	16.0	3:00p	ENE
21	75.2	81.5	2:00p	71.9	9:00a	0.0	10.2	0.43	4.8	14.0	7:30a	ENE
22	75.8	81.7	12:30p	71.3	6:30a	0.0	10.8	0.00	3.3	12.0	12:30a	NE
23	75.5	80.7	2:00p	71.7	7:30a	0.0	10.5	0.20	3.0	13.0	3:30p	ENE
24	76.3	82.7	12:30p	72.0	3:00a	0.0	11.3	0.00	3.2	14.0	12:30p	NE
25	76.5	82.5	12:00p	73.4	9:30p	0.0	11.5	0.11	5.3	18.0	12:30p	ENE
26	75.0	80.4	3:30p		5:30a	0.0	10.0	0.87	6.1	24.0	1:30a	ESE
27	75.1	78.6	2:30p	70.4	9:00p	0.0	10.1	2.24	5.7	27.0	5:30p	ESE
28	74.3	75.9	3:00a	71.0	12:30a	0.0	3.5	0.01	5.5	25.0	9:00a	ENE
29												
30												
31												
	75.4	84.9	5	66.5	10	0.0	285.8	 11.90	6.1	36.0	3	ENE

Max >= 90.0: 0 Max <= 32.0: 0 Min <= 32.0: 0

Min <= 0.0: 0 Max Rain: 5.38 ON 12/19/10

Days of Rain: 11 (>.01 in) 11 (>.1 in) 2 (>1 in)

Heat Base: 65.0 Cool Base: 65.0 Method: Integration

Waimanalo Gulch Sanitary Landfill Storm water Monitoring Culvert Entrance Compliance Monitoring Stations , 23 December 2010 Discharge Event Laboratory Final Data Summary Table

Method	Analyte	Unit	Screening Criteria	EPA Benchmark	CULVERT
1664A	HEM (Oil and Grease)	mg/L	15	15	2.2 J
	Alpha-Terpineol	mg/L	0.016	NA	ND
	Benzoic acid	mg/L	0.071	NA	ND
40CFR136A 625	p-Cresol	mg/L	0.014	NA	ND
	Pentachlorophenol	mg/L	0.02	NA	ND
	Phenol	mg/L	0.015	1.0	ND
	Arsenic	mg/L	0.36	0.16854	0.0064 J
	Cadmium	mg/L	0.003	0.0159	ND
	Calcium	mg/L	NA	NA	52
	Iron	mg/L	1	1	4.5
	Lead	mg/L	0.029	0.0816	0.0048 J
EPA 200.7 Rev 4.4	Magnesium	mg/L	NA	0.0636	27
	Potassium	mg/L	NA	NA	9.2
	Selenium	mg/L	0.02	0.2385	0.014 3
	Silver	mg/L	0.001	0.0318	ND
	Sodium	mg/L	NA NA	NA	120
	Zinc	mg/L	0.022	0.117	0.044
EPA 245.1	Mercury	mg/L	0.0024	0.0024	0.000049 J
EPA 7196	Hexavalent Chromium	μg/L	16	NA	12 **
EPA 365.1	Phosphorus, Total	mg/L	NA	2.0	0.32 B
MCAWW 350.1	Ammonia	mg/L	4.9	19	0.12 B
MCAWW 353.2	Nitrate-Nitrite as Nitrogen	mg/L	NA NA	0.68	0.057 J
EPA Total Nitrogen	Nitrogen, Total	mg/L	NA NA	NA	2.7
EPA 405.1	BOD (5-Day)	mg/L	NA NA	30	18
MCAWW 410.4	Chemical Oxygen Demand	mg/L	NA	120	85
SM 2540D	Total Suspended Solids	mg/L	100	100	86
MCAWW 300,0A	Bromide	mg/L	NA	NA	1.2
	Chloride	mg/L	NA	860	160
	Sulfate	mg/L	NA	NA	74
SM 2320B	Bicarbonate Alkalinity	mg/L	NA NA	NA	210
	Carbonate Alkalinity	mg/L	NA	NA	ND
	Total Alkalinity	mg/L	NA NA	NA	210
Field Method	pH	SU	5.5-8.0	6.0-9.0	7.75

N	ote

Bold	exceed screening criteria
ND	not detected above the reporting limits
•	not detected above the method detection limits
**	result after subtracting the 6 ug/L detection in the reagent blank
µg/L	micrograms per liter
mg/L	milligrams per liter
В	compound was found in the blank and sample
BOD	biochemical oxygen demand
HEM	n-hexane extractable material
NA	no limitation at this time
NT	not tested
J	estimated result is less than the reporting limit but greater than or equal to the method detection limit